If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w^2+3w-1=0
a = 10; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·10·(-1)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-7}{2*10}=\frac{-10}{20} =-1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+7}{2*10}=\frac{4}{20} =1/5 $
| 11x/9=6(x+4) | | 4y-22+y+5=50 | | 4y-22+y+5=10 | | 3x+1=x^2+10x+13 | | 4.5=z+3 | | X+20y=110 | | 62=5^x | | 5x2+5x=10 | | X²+5x-24=42 | | 3x/4=16/18 | | 6x-38=4x | | 6+3x-6=84-6 | | 6+3x=84-6 | | 14=1/2(9x-8 | | N(n-1)=870 | | 71 −3(73 n−72 )=- | | 3(3x-3)-4=3(x-3)+32 | | 0.4x^2+28x-245=0 | | 7x-(8x+4)=2x-19 | | 8y-5=10y+1 | | 8x-4=5x-70 | | 2x-12=4x+12 | | 3x-14=5x-6 | | -6(h-85)=-90 | | 6(s-68)=96 | | u^=-13u | | 5=s+6/4 | | 88=9t+16 | | 5^x=40 | | 99=3(p+9) | | 4.7g=86.95 | | 35=-7-15+2x |